163=2x^2

Simple and best practice solution for 163=2x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 163=2x^2 equation:



163=2x^2
We move all terms to the left:
163-(2x^2)=0
a = -2; b = 0; c = +163;
Δ = b2-4ac
Δ = 02-4·(-2)·163
Δ = 1304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1304}=\sqrt{4*326}=\sqrt{4}*\sqrt{326}=2\sqrt{326}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{326}}{2*-2}=\frac{0-2\sqrt{326}}{-4} =-\frac{2\sqrt{326}}{-4} =-\frac{\sqrt{326}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{326}}{2*-2}=\frac{0+2\sqrt{326}}{-4} =\frac{2\sqrt{326}}{-4} =\frac{\sqrt{326}}{-2} $

See similar equations:

| 3(x+8)=-27 | | (7x-20)(4x+16)=180 | | 4=(6m-7) | | .75(x+42,000)=60,000 | | 6a–4=11+a | | 2x–15=3(x+6) | | (4x+16)(7x-20)=180 | | 18=(a-2.5) | | (2a-18.3)=(a-2.5) | | X.x+10=600 | | (a-2.5)=(a+2.7 | | (a-2.5)=(a+2.7)=(18.5)=(2a-18.3) | | 0p+5(1-p)=10p+0(1-p) | | 61/2=1/2(41/3)h | | 3y÷(2+6)=32 | | 174-y=280 | | 7n=39 | | 0q+5(1-q)=10q+0(1-q) | | t/14–11=–11 | | 45=9v-4v | | 4k-38=10(k+1) | | 27^(2x+3)=9^(5x)3 | | 48/r=2 | | 2(-4+2d)=11d+6 | | 6(-7x-10)=-60 | | (g/8)+7=11 | | -4x+5+(-13x+39=180 | | -2(3x+7)=-38 | | 6g-19=61 | | (10x+30)°=(6x+38)° | | 10+3x-7x=-38 | | 4x-25=6x+5 |

Equations solver categories